Lecture 6:
 Hierarchical Clustering; Spectral Clustering

Lester Mackey

April 16, 2014

Blackboard discussion

- See lecture notes

Average linkage agglomerative clustering

Example behavior in 2D, Courtesy: Dave Blei

[^0]

[^1]

[^2]

[^3]

[^4]

iteration 018

iteration 021

D. Blei

Clustering 02
iteration 022

D. Blei

Clustering 02
iteration 023

D. Blei

Clustering 02
iteration 024

D. Blei

Clustering 02

Clustering human tumor microarray data

Dendrogram from agglomerative hierarchical clustering with average linkage (Source: ESL)

6830 gene expression values from 64 tumors of 12 types

Clustering human tumor microarray data

Source: ESL

Average Linkage

Complete Linkage

Single Linkage

Clustering human tumor microarray data

Source: ESL

- Can also cluster genes (instead of tumors) based on similar expression patterns across tumors
Heatmap columns have been reordered based on clustering
- Ordering not unique
- In R 'hclust' subtrees ordered based on cluster tightness
- Daughter cluster with smaller internal dissimilarity ordered first

Choosing k

Source: Tibshirani et al. (2001)

- Microarray data
- Avg. linkage
- Gap statistic used to select truncation level / number of clusters

Cautionary tale?

- Approximate localllll $\begin{aligned} & \text { Fig. 3. Dendrogram from the deoxyribonucleic acid (DNA) microarray data: the dotted line cuts the tree, leaving } \\ & \text { two clusters as suggested by the gap statistic }\end{aligned}$ maximum at $\mathrm{k}=2$
- Gap rises again after $\mathrm{k}=6$
- Reflects smaller clusters within large separated clusters

(a)

(b)

In the wild

"Repeated

Observation of Breast
Tumor Subtypes in Independent Gene Expression Data Sets" (Sorlie et al., 2003)

- Evidence of multiple disease subtypes based on separate clustering results on several datasets
- Identified highly expressed genes per subtype
- Generated testable hypotheses

Hierarchical clustering in the wild

"The Statistical Analysis of Aesthetic Judgment: An Exploration" (Davenport and Studdert-Kennedy, 1972)

- Clustered 57 paintings rated for composition, drawing, color, \& expression
- Results "at odds with conventional expectation"
- "Exploration suggests that there could be productive applications in the comparative analysis of subjective judgment"
- "The value of this analysis...will depend on any interesting speculation it may provoke."

Practicalities

- Model selection (truncation level) is still necessary to achieve a single clustering
- No single satisfying solution, but many of the methods discussed in k-means setting also apply here
- Interpretation of dendrograms difficult for large datasets
- One solution: label each interior node with a prototype datapoint
- Choose point with minimal maximum dissimilarity to any other point in cluster (Bien \& Tibshirani, 2011: Hierarchical Clustering with Prototypes via Minimax Linkage)
- Use minimal maximum dissimilarity as cluster dissim. measure: minimax linkage
- Yields interpretable cluster summary at every level

Extensions

- Could use alternative measures of cluster dissimilarity, even those that do not arise from pairwise observation dissimilarity
- We have discussed model-free approaches to hierarchical clustering (akin to k-means), but probabilistic, model-based approaches (closer in spirit to mixture modeling) also exist

Spectral clustering

- Motivation
- Methods like k-means well-suited for spherical or elliptical clusters but often fail to capture non-convex clusters
- Example: points in concentric circles
- Spectral clustering is designed for such situations, where clusters are connected but perhaps not compact

k-means, 2 clusters

Spectral clustering, 2 clusters

Blackboard discussion

- See lecture notes

[^0]: D. Blei

 Clustering 02

[^1]: D. Blei

 Clustering 02

[^2]: D. Blei

 Clustering 02

[^3]: D. Blei

 Clustering 02

[^4]: D. Blei

 Clustering 02

