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6.1 Hierarchical Clustering

Last time, we introduced the task of hierarchical clustering, in which we aim to produce
nested clusterings that reflect the similarity between clusters. This contrasts sharply with
our former discussion of “flat” or structureless clustering methods like k-means which do
not model relationships between clusters. In this lecture, we will continue our discussion
of the standard model-free approaches to hierarchical clustering by considering both of the
principal paradigms for hierarchical clustering:

1. Agglomerative / Bottom-Up Clustering, in which we recursively merge similar clusters

2. Divisive / Top-Down Clustering, in which we recursively sub-divide into dissimilar sub
clusters

The standard approaches in both settings are greedy fashion and so typically not optimal in
any sense.

6.2 Agglomerative Clustering

Agglomerative clustering is the more common of the two paradigms. The standard
greedy algorithm proceeds as follows:

1. Start with all data points in their own clusters

2. Repeat until only one cluster remains:

-Find 2 clusters (C}, C3) that are most similar (that have the smallest pairwise
cluster dissimilarity d(Cy, Cs) )

-Merge (1, C5 into one cluster
In order to perform the above algorithm we need to know how to construct cluster dissimi-

larity from a measure of data point similarity d(x,2’)? The three most common measures,
outlined below, are single linkage, complete linkage, and average linkage.
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6.2.1 Single Linkage

The single linkage measure dg(Cy,Cs) = (rjnin . d(xq,x9) judges cluster similarity by
r1€C1,22€C2

the most similar points in the clusters being compared. A direct implementation of this algo-
rithm would require order of (# clusters)? work to choose clusters and update the minimum
dissimilarity to the newly merged cluster. The complexity could be reduced significantly
with appropriate data structures. A drawback of this choice is that single Linkage may yield
long, extended clusters or chains of points (“chaining”) so points in the same cluster could
be quite dissimilar.

6.2.2 Complete Linkage

The complete linkage measure dy(Cy,Cy) = max_ d(x1, o) judges cluster similarity by
r1€C1,22€0C2

the least similar points in the clusters being compared. A direct implementation of this algo-
rithm would require order of (# clusters)? work to choose clusters and update the maximum
dissimilarity to the newly merged cluster. The complexity could be reduced significantly
with appropriate data structures. A drawback of this choice is that points in one cluster
may be closer to points in another cluster than to any of its own cluster.

6.2.3 Average Linkage

The average linkage measure d,;(Cy, Cy) = Wl\cg\ D w1 eCyapec, UT1, T2) judges cluster simi-
larity by average similarity of all of the points in the clusters being compared. This metric
can be considered a compromise between single linkage and complete linkage. A direct im-
plementation of this algorithm would require order of (# clusters)? work to choose clusters
and update the average dissimilarity to the newly merged cluster. The complexity could be
reduced significantly with appropriate data structures. A drawback of this choice is that
average linkage is not invariant to increasing or decreasing transformations of dissimilarity
matrix d. This property could be regained by using the median dissimilarity instead of the
average.

6.2.4 Summary

The three methods outlined above are the most common measures of cluster dissimilarity.
They yield similar results when data is clustered and clusters are compact (more similarity
within clusters than between). Otherwise the results may differ. With any of the above
choices, the algorithm is monotonic meaning that the similarity between merged clusters
at the t"" merge decreases monotonically with ¢.

6.3 Divisive Clustering

Divisive clustering is the second, less common paradigm for hierarchical clustering. It can
be advantageous to use divisive clustering over agglomerative when you only want a small
number of total clusters. Here are two common options for implementation.
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6.3.1 Option 1

Option 1 recursively applies 2-means or 2-medoids to a selected cluster. The downsides of
this approach are that

1. Results depend on the initialization of k-means / k-medoids at each division step
because of multiple stationary points

2. The algorithm can violate the monotonicity property, as divided clusters at split ¢ can
be even more similar than those at ¢ + 1. This is a problem for making dendrograms.

As a result, we will focus our attention on a second option.

6.3.2 Option 2

Option 2 is a greedy approach that was described in Smith et al. (1965). It follows the
following steps:

1. Start with all data in one cluster
2. Repeat until all clusters are singletons (or until no dissimilarity remains between clus-
ters):
-Choose one cluster G

-Remove the point in G with largest average dissimilarity with all other points in
G; add that point to a new cluster H

-Repeat the following until no point in G is closer to H on average:
-Remove z* = arggg}axﬁ > gecniny AT, g) — |—I§| Y her d(x, k) and add to H
Option 2 avoids the downsides of Option 1 (dependence on initialization, monotonicity vi-

olation), but a question that arises is how should we choose the cluster G to split? Two
commonly used methods to choose G are:

1. Select G with the largest diameter, diam(G) = ma}éd(m, ')
z,z' €

2. Select GG with the largest average pairwise point dissimilarity.

6.4 Applications

Let us turn to particular examples and applications of hierarchical clustering; we will refer-
ence the accompanying slides for this lecture.

6.4.1 Agglomerative Clustering

A visualization of agglomerative clustering in action is found on slide 3 (beginning with
“Data” and ending with “iteration 28”). Each slide represents an iteration of the clustering
algorithm; all points in a common cluster are connected by red lines. In iterations 10-11, we
see an example of two previously merged clusters also merging.
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Agglomerative Clustering of Cancer Gene Expression Profiles

On slide 4, we see a dendrogram, a visual representation of cluster mergings in hierarchical
clustering. Clusters are arranged by merging order and nested thereby. This dendrogram
represents a series of clusterings of gene expression samples from 64 samples with 12 cancer
types. Observe that many cancer types cluster together.

Comparison of Clustering Methods

On slide 5, we see displayed the results of Agglomerative Clustering on the dataset shown
in slide 4 when using different similarity metrics. Here, in order, we see d,;, d., and d.
Note that clustering is very method-dependent, and differences are evident between all three
agglomerative clustering approaches.

As we note that clustering is very method-dependent, several peers note that single linkage,
which uses the dg similarity metric, results in very "long” clusters, whereas complete linkage
(which uses d,;) results in a more balanced clustering. In general, the instructor notes that
associations verified only by a single clustering method may be suspect and that evidence
for clustering structure could be buttressed by agreement among disparate methods.

Clustering Human Microarray Data

Clustering can be done over genes which are expressed rather than the samples in which they
are expressed as well. On slide 6 we see an example of a clustering of approximately 7,000
genes in cancer samples. Note that the order of the clusters is not unique, as any cluster
ordering can be reversed by rotation around a node. Generally an ordering scheme can be
very important to visual interpretation of clustering data. The hclust function in R follows
the convention of ordering by tightness of cluster.

A Brief Note: Challenges in Interpreting Dendrograms

Selecting the “correct” number of clusters from a hierarchical clustering to can be challenging.
This is generally done by “cutting” a tree off at a given point (truncation at a dissimilarity
truncation level) and enumerating the remaining branches (see slide 7, fig3); the height of the
“cut” will result in differing numbers of clusters. Choosing £ intelligently and informatively
to classify and understand data is crucial. Because there are many levels of clustering, it is
possible to observe late-term spikes in the gap statistic for different values of k (slide 7, fig
4b). These spikes reflect smaller clusters nested within larger ones.

Breast Cancer Subtypes

By clustering gene expression in several manners on several tumor gene expression datasets,
we can observe (slide 8) several different breast cancer types, as well as several suites of genes
highly expressed per subtype. In particular this is noteworthy because it is well-validated
and generates testable hypotheses to confirm validity of clustering predictions.
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An Unusual Example: Clustering Great Paintings

After clustering 57 paintings by ratings for composition, color, drawing type, and expression,
the authors discussed in slide 9 generated a dendrogram of great artwork labeled by painter.
The authors note that the value of this analysis is dependent on the interesting hypotheses
generated by the clustering, as in the example above.

6.4.2 Practicalities and Challenges
Model selection presents challenges similar to k-means cluster selection.

Model selection (choosing truncation level, referred to in 6.4.1, in A Brief Note...) is a
challenge in creating meaningful interpretations of hierarchical clusterings. Although there
is no single solution to interpretation, many of the methods we have discussed for k selection
in k-means may apply equally well here.

Interpreting dendrograms is challenging for large datasets.

It is difficult to interpret dendrograms even past the selection of a model because large
datasets may make visualizing clusters impossible, as well as choosing a meaningful k diffi-
cult (if there are several thousand data points, there may be tens or hundreds of meaningful
clusters).

One solution is labeling each interior node with a prototype data point. One could simply
choose the average or median of those in the cluster. A much more informative choice would
be labeling each cluster with a prototypical datapoint which is minimally dissimilar from
every point in the cluster. This is called minimax linkage: when aiming to label a cluster
C, choose the prototype z* = argmin . max,cc d(z, 2').

6.5 Spectral Clustering

We next consider another type of clustering known as spectral clustering. Spectral cluster-
ing is motivated by the desire to detect connected by non-compact and non-convex clusters
that prior methods like k-means fail to detect. On slide 12 we see such an example of con-
centric rings of datapoints. On the left we see the results of a k-means clustering approach,
compared with spectral clustering on the right. In this case, k-means attempts to find com-
pact clusters based on Euclidean distance and so divides each concentric ring in half; spectral
clustering instead perfectly identifies the two concentric rings of points. In the remainder of
this lecture, we will study the spectral clustering algorithm in more detail.

6.5.1 Spectral Clustering

In the spectral clustering setup, we begin with a matrix S € R™" of similarities s;;
between points z; and x; in our data set. We will use this matrix to derive a weighted
adjacency matrix,

W =g(5) e R™
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in a problem-specific fashion. We then will view our data as vertices within a weighted graph
G = (V, E,W) where if w;; = 0, there is no edge between vertices i and j, and, if the weight
is non-zero, the edge weight is equal to w;;.

Our goal is now to partition the vertices of G such that there is little weight between
partitioned groups and high weight within partitioned groups. Spectral clustering atttempts
to achieve this end with the following algorithm:

Spectal Clustering Algorithm
1. Construct W = ¢(S5) € R™" as above.
2. Form a graph Laplacian L = f(W) € R™".
-Different choices of Laplacian give rise to different spectral clustering variants.

3. Identify eigenvectors U € R"* of L corresponding to the k smallest eigenvalues.

-We can view each row z; of U as a new, k-dimensional representation of the
datapoint z;.

4. Cluster z; using k-means with k clusters.

6.5.2 Questions and Closing Remarks

At this point, the spectral algorithm is rather mysterious, and a number of questions remain
to be answered:

e What is L?
e Why is U a useful alternative representation of our data?

e How do we choose W?

We will address each of these in detail next lecture, but let us end this lecture with a
description of the standard choices of graph Laplacian L.

Graph Laplacians

To define the standard graph Laplacians, we will need some additional notation. We must

first define the degree of a vertex 7 as d; = Z?Zl w;; and the the degree matrix as the

diagonal matrix

D = diag(dy, ds, . .., d,).
In these terms, the most commonly used Laplacian matrices are
e The unnormalized Laplacian, L,, = D — W
e The symmetric normalized Laplacian, Ly, = [ — D™Y/2W D~1/2
e The random walk normalized Laplacian, L,, = DL =1 — DWW

All three have similar desirable properties that make the minimum eigenvectors useful. Next
time, we will elucidate the properties of L,.,,.
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