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Motivation
=

" World is filled with data of increasing size and complexity
" Much of it has underlying low-dimensional structure
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Motivation

" World is filled with data of increasing size and complexity
" Much of it has underlying low-dimensional structure

Newman, 2008

* How do we uncover the hidden structure in our data?-



Unsupervised learning

= Supervised learning

Given datapoints x,, . . ., x,, with labels y,, ..., y,, learn to
predict the label y, ., associated with each new input x_.,,

Classification:

Primate E ﬁ

- Unsuperwsed Iearnmg

Given only xy, . . ., X,,, infer some underlying structure
Clustering:

Group these unlabeled

images into three classes §&
Evaluation much more

challenging!




Why do unsupervised learning?

Labeled data often expensive or difficult to collect;
Unlabeled data abundant and cheap

Develop compressed representations to save storage and
computation

Reduce noise, missingness, irrelevant attributes in high-
dimensional data

Visualization and exploratory data analysis
As a preprocessing step for supervised learning



This Course

Survey of unsupervised learning methods, their
properties, and their applications
Classical paradigms

Clustering and latent class methods

Dimensionality reduction and latent feature methods

Modern topics (based on time and interest)
Unsupervised learning with missing data
Sparse / interpretable unsupervised learning

Nonnegative matrix factorization, Document topic modeling
Subspace clustering

Method of moments for latent variable models
Unsupervised deep learning 7



Clustering

Goal: Segment data into groups of similar points
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Examples
Segment pixels in an image by object
Group network participants into communities

Identify cancer subtypes from gene expression patterns

Will discuss many approaches to clustering in Stats306B
Begin with one of the simplest and most popular: k-means



k-means

Summary: Assign each datapoint to one of k clusters so
that on average each point is close to its cluster mean

e Notation

— Datapoint z; € RP
— Cluster mean m; € RP
— Cluster assigment z; € {1,...,k}

2
2

e Objective: J(z1.,, m1.1) = E?:l zi —mg,

o (Goal: Minimize J over zy., and mq.x



k-means

e Goal: Minimize J(21.,, M1.k) = 2?21 lx; — mz%H% over 21., and my.j

— Datapoint x; € RP
— Cluster mean m; € RP

— Cluster assigment z; € {1,...,k}
e Standard k-means algorithm / Lloyd’s algorithm

— Initialize cluster means arbitrarily (e.g., sample from datapoints)
— Alternate until convergence

+ Update cluster assignments: z1., < argmin,, J(21.n, m1.k)
- 1.e., assign each point to the cluster with closest mean
+ Update cluster means: my.; < argming,,  J(21.n, M1.x)

- le., m; = Zgﬁj%?;ix, the mean of points in cluster j
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Example: 2-means, Lloyd’s algorithm
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Example: 2-means, Lloyd’s algorithm
e

2t

Courtesy of ! ' '
Sriram Sankararaman _2 O 2



Example: 2-means, Lloyd’s algorithm
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Example: 2-means, Lloyd’s algorithm
e
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Objective function J after each iteration
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Does Lloyd’s algorithm always converge?

The objective J always converges
Lloyd’s algorithm is a coordinate descent procedure
Each step monotonically decreases objective
Only finite number of partitions of data, so objective must
converge in finite number of steps

Technically, algorithm could cycle if ties arise (i.e., if
multiple centroids equidistant from a point)

Minor problem: avoid by breaking ties in a consistent fashion
(e.g., always assign point to “smallest” centroid under some
total ordering of vectors)

20



Image compression
N

Credit:
Dave Blei

o o i =]

= Pixel is vector of red, green, and bI'ue'rvaIUS in {0,...,255}

= 2048 x 1536 image is a dataset of 3.1 million vectors,
each requiring 24 bits of storage

= Let’s compress by clustering pixels with k-means 2



Vector quantization
e

Credit:
Dave Blei
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= Recovered k means called codebook

* Each codeword (after rounding) corresponds to a color
= Compression: replace each image pixel by its codeword

" log,(k) bits instead of 24 per pixel (plus small overhead) |




Peanuts vector quantization: 2 means

Courtesy of Dave Blei




Peanuts vector quantization: 4 means




Peanuts vector qguantization: 8 means




Peanuts Vector Quantization: 16 means

Courtesy of Dave Blei




Peanuts Vector Quantization: 32 means

Courtesy of Dave Blei




Peanuts vector quantization: 64 means

Courtesy of Dave Blei




Peanuts vector quantization: 128 means

Courtesy of Dave Blei




Peanuts vector quantization: 256 means

Courtesy of Dave Blei




k-means: Practical considerations

Squared Euclidean objective restrictive

J(z1msmig) = >y ||z — my,||3

Inappropriate for non-quantitative (e.g., categorical) features
Euclidean distance
Sensitive to outliers
lll-suited for features with very different scales / importances
NP-hard optimization problem
Lloyd’s algorithm usually finds suboptimal solutions
Many random restarts often needed for good performance

Must choose k

Running time: # features x # datapoints x k per iteration

Orders of magnitude reductions using space-partitioning data
structures like kd-trees (e.g., Kanungo et al., 2002, optional reading)
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Beyond Euclidean distance

Issue: Squared Euclidean distance in k-means

Idea: Minimize Ja(z1.n,m1k) =D d(xi,my,)
Arbitrary dissimilarity / discrepancy measure d(x, m)
Optimize via coordinate descent as in Lloyd’s algorithm

e Update cluster assignments: z1., <— argmin,, Jg(21.n, M1:x)

e Update cluster representatives: mq. <— argming,, , Jq(21.n, M1:x)

Pro: Applies to all data types and dissimilarity measures
Con: Updating cluster representatives m,., may be expensive

k-medoids algorithm
Minimize J, above but constrain each cluster representative
to be a datapoint, i.e. m; € {x,, ... ,.x.}
Pro: Don’t need to store datapoints, only pairwise
discrepancies d(x, x;)
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k-means++

Arthur and Vassilvitskii, 2008 (optional reading)
Issues: Lloyd’s algorithm suboptimal, random restarts

k-means++: Improves initialization of Lloyd’s algorithm
Choose first center m; uniformly at random from {x,, ... ,x..}
Forj=2, .., k:
Let D(x) = Euclidean distance to closest center previously chosen
Choose m; = x; with probability proportional to D(x,)?

Run Lloyd’s algorithm with this initialization
Thm: E[objective after k-means++] < 8(In(k) + 2) optimal

In practice: more accurate and faster than k-means alone

Average ¢ Minimum ¢ Average T

k k-means k-means++ k-means k-means++ | k-means k-means++
10 | 3.387- 108 93.37% 3.206 - 108 94.40% 63.94 44.49%
25 | 3.149- 108 99.20% 3.100 - 108 99.32% 257.34 49.19%
50 | 3.079-108 99.84% 3.076 - 108 99.87% 917.00 66.70%

Table 3: Experimental results on the Intrusion dataset (n = 494019, d = 35). For k-means, we list the ac%%al
potential and time in seconds. For k-means++, we list the percentage improvement over k-means.



Choosing the number of clusters k

Some applications determine k
Target compression level in vector quantization
Funds to develop three new Cheerios flavors

How do we pick k otherwise?

Minimum k-means objective shrinks as k grows: not helpful

Evaluate fit of learned centers on held-out data”
Problem: Held-out objective also tends to decrease with k!

No agreed-upon solution but many alternatives...

Stability: Cluster randomly subsampled or perturbed datasets
and measure discrepancy between resulting clusterings
Choose k to minimize discrepancy
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Choosing the number of clusters k

Sum of Squares

Elbow criterion
Marginal gain in objective may

decrease at true / natural value of k
Not always unambiguously defined
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Human tumor microarray data
(Courtesy: Rob Tibshirani)
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Simulated data, 4 true clusters
(Courtesy: Dave Blei)
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Choosing the number of clusters k

Gap statistic (Tibshirani, Walther, & Hastie, 2001 — optional reading)
Let O«be the objective value of k-means run on {x,, ... ,x, }

Let Uxbe the objective value of k-means run on n points
sampled randomly from the smallest box containing {x,, ... ,.x,}
Serves as a single cluster null distribution

Roughly, choose k to maximize Gap(k) = E[log(Ux)] — log(Ox)

More precisely, form Monte Carlo estimate of Gap and choose
smallest k such that

Gap,.(k) > Gap,(k+1) - estimate of standard deviation of log(Ux)

36



Gap statistic: simulated data
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FIGURE 14.11. (Left panel): observed (green) and expected (blue) values of
log Wk for the simulated data of Figure 14.4. Both curves have been translated
to equal zero at one cluster. (Right panel): Gap curve, equal to the difference
between the observed and expected values of log Wi . The Gap estimate K™ is the

smallest K producing a gap within one standard deviation of the gap at K + 1,37
here K™ = 2.



Comparing estimates of k

(Tibshirani, Walther, Hastie 2001)

Estimate of number of clusters k
Method 1 2 3 4 5 6 7 8 9 10
CH o* 0 0 10 0 0 3 5 17 15
KL 0* 0 1 5 12 5 13 5 9 0
Hartigan 0* 0 0 0 0 0 0 2 48
Silhouette o* 18 22 10 0 0 0 0 0 0
Gap 42%* 7 0 1 0 0 0 0 0 0
Gap/pc 44* 6 0 0 0 0 0 0 0 0
CH 0* 50 0 0 0 0 0 0
KL 0* 29 5 3 2 2 0 0 0
Hartigan 0* 0 1 20 21 6 0 0 0 0
Silhouette 0* 49 1 0 0 0 0 0
Gap/unif 49* 0 0 0 0 0 0
Gap/pc 50%* 0 0 0 0 0 0 0 0 0
CH 0 0 50%* 0 0 0 0 0 0
KL 0 0 39% 0 1 2 0 0
Hartigan 0 0 1* 8 19 13 3 3 2 1
Silhouette 0 0 50* 0 0 0 0 0
Gap/unif 1 0 49* 0 0 0 038 O
Gap/pc 2 0 48* 0 0 0 0 0 0 0




Comparing estimates of k

(Tibshirani, Walther, Hastie 2001)

Estimate of number of clusters k

Method 1 2 3 4 5 6 7 8 9 10
CH 0 42%* 8 0 0 0 0
KL 0 0 0 35* 5 3 3 3 0 0
Hartigan 0 3* 9 12 8 2 3 5
Silhouette 0 20 15 15* 0 0 0 0 0
Gap/unif 0 47* 0 0 0 0 0
Gap/pc 2 2 42%* 0 0 0 0 0 0
CH 0 44* 1 0 0 0 0 0
KL 0 45* 3 1 1 0 0 0
Hartigan 0 2 48* 0 0 0 0 0 0
Silhouette 0 13 20 16* 5 0 0 0 0 0
Gap/unif 0 0 50* 1 0 0 0 0 0
Gap/pc 0 46* 0 0 0 0 0 0
CH 0 0* 0 0 7 16 27
KL 0 50* 0 0 0 0 0 0
Hartigan 0 0* 0 0 1 5 6 35
Gap/unif 0 o* 17 16 2 14 1 0 0 0
Gap/pc 0 50%* 0 0 0 0 0 o 39




Choosing the number of clusters k

Gap statistic
Performs similarly to other leading methods when k> 1
Pro: Can detect k =1 (many other methods can’t)
Con: Performs poorly in high dimensions
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Simulations, true k= 2: p = 2 (Left), p = 100 (right)
(Mohajer et al., 2011: A comparison of Gap statistic definitions with and without logarithm function)
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k-means in the wild: Biology

Coping with cold: An integrative, multitissue analysis of the
transciptome of a poikilothermic vertebrate (Gracey et al.,
2004)

Carp exposed to increasing levels of
cold

Genes (rows) clustered using 23-
means according to cold response
across different tissues

No explanation for k = 23 given

Eventually interpreted functional
significance of each cluster

Credit: Dave Blei
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k-means in the wild: Archaeology

Credit: Dave Blei

Late Bronze polities

Spatial and Statistical Inference of Late Bronze Age Polities in based on textual evidence. Lebanon
. Late Bronze "city-states”
the Southern Levant (Savage and Falconer, 2003) Site clusters from ‘

k-means analysis
= Key sites
«  Other sites

Cluster archaeological site locations
in Israel with k-means

k chosen by comparing to a null
distribution based on randomly
sampled points

“Infer a political landscape that
corresponds well with many aspects
of historical reconstruction and
propose new ideas on the
configuration and structure of Late ? 3}
Bronze Age [1500-1200 BC] polities” | & xom " O




k-means in the wild: Education

Credit: Dave Blei

Teachers as Sources of Middle School Students’ Motivational Identity: Variable-Centered and
Person-Centered Analytic Approaches (Murdock and Miller, 2003)

Clustered 206 eighth-grade students by survey data
describing parent academic support, peer academic
support, and teacher caring levels

No clusters centers had above average support for one
category and below average support for another;
suggests that support classes do not compensate for one
another?

k =5 chosen based on parsimony, heterogeneity,
convergence issues, and inspection

43



k-means in the wild: Education

Credit: Dave Blei
TaBLE 3. Five-Cluster Solution: Z scores on Each Clustering Variable
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Teacher caring -5 —5to.5 —5t0 .5 -5 1.0
Peers’ academic support 1.0 -5 1.0 -5 —5t0 .5
Parents’” academic support 5 —-1.0 —.5t0.5 —.5to.5 1.0

TABLE 4. Means and Standard Deviations for Each Cluster on Grade 8 Motivational Variables

Intrinsic
Academic Valuing of Teacher-Rated
Self-Efficacy Education Effort
Cluster M SD M SD M SD
1. All positive 3.59 48 2.99 557 3.74 26
2. Peer negative, parents very negative 2.44 .66° 2.16 Do1P 3.05 61P
3. Peer positive 3.01 73 243 .66° 3.26 .66°
4. Negative teacher and peer 2.47 .63° 2.24 S1P 3.17 590
5. Positive teacher and parents 3.19 65¢ 2.89 622 3.54 472




k-means: Practical considerations, Part I

Hard assighments to clusters not stable under small
perturbations of data

Mixture modeling (next time) employs soft assignments

Gives equal weight to each coordinate and cluster
Mixture modeling can relax both assumptions

Clusters change arbitrarily for different K
Hierarchical clustering (later) yields nested clusterings

Works poorly on non-convex clusters
Spectral clustering (later) well-suited to non-convex clusters

45



Summary

Unsupervised learning:

Goal: Discover hidden structure in data without prior labels
or observations of that structure

Challenging but necessary
Various practical benefits

Clustering
Goal: Segment datapoints into similar groups
Many applications, many approaches

k-means
Simple, popular, canonical approach to clustering
Great diversity of applications, including vector quantization

Various drawbacks and opportunities for improvement
Objective, solution optimality, choice of k, running time
Various generalizations, including k-medoids
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Credits

Parts of this material were adapted from slides by Dave
Blei, Sriram Sankararaman, and Robert Tibshirani
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