Lecture 1: Unsupervised Learning; Clustering with *k*-means and *k*-medoids

Lester Mackey

March 31, 2014

Stats 306B: Unsupervised Learning

Motivation

- World is filled with data of increasing size and complexity
- Much of it has underlying low-dimensional structure

Africa Mid.East Europe C.S.Asia E.Asia

Motivation

- World is filled with data of increasing size and complexity
- Much of it has underlying low-dimensional structure

Newman, 2008

How do we uncover the hidden structure in our data?

Unsupervised learning

Supervised learning

- Given datapoints x_1, \ldots, x_n with labels y_1, \ldots, y_n , learn to predict the label y_{new} associated with each new input x_{new}
- Classification:

Chair

Primate

Which is this?

Unsupervised learning

- Given only x_1, \ldots, x_n , infer some underlying structure
- Clustering:
 - Group these unlabeled images into three classes
- Evaluation much more challenging!

Why do unsupervised learning?

- Labeled data often expensive or difficult to collect;
 Unlabeled data abundant and cheap
- Develop compressed representations to save storage and computation
- Reduce noise, missingness, irrelevant attributes in highdimensional data
- Visualization and exploratory data analysis
- As a preprocessing step for supervised learning

This Course

- Survey of unsupervised learning methods, their properties, and their applications
- Classical paradigms
 - Clustering and latent class methods
 - II. Dimensionality reduction and latent feature methods
- Modern topics (based on time and interest)
 - Unsupervised learning with missing data
 - Sparse / interpretable unsupervised learning
 - Nonnegative matrix factorization, Document topic modeling
 - Subspace clustering
 - Method of moments for latent variable models
 - Unsupervised deep learning

Clustering

Goal: Segment data into groups of similar points

- Examples
 - Segment pixels in an image by object
 - Group network participants into communities
 - Identify cancer subtypes from gene expression patterns
- Will discuss many approaches to clustering in Stats306B
 - Begin with one of the simplest and most popular: k-means

k-means

- Summary: Assign each datapoint to one of k clusters so that on average each point is close to its cluster mean
- Notation
 - Datapoint $x_i \in \mathbb{R}^p$
 - Cluster mean $m_i \in \mathbb{R}^p$
 - Cluster assignment $z_i \in \{1, \ldots, k\}$
- Objective: $J(z_{1:n}, m_{1:k}) = \sum_{i=1}^{n} ||x_i m_{z_i}||_2^2$
- Goal: Minimize J over $z_{1:n}$ and $m_{1:k}$

k-means

- **Goal:** Minimize $J(z_{1:n}, m_{1:k}) = \sum_{i=1}^{n} ||x_i m_{z_i}||_2^2$ over $z_{1:n}$ and $m_{1:k}$
 - Datapoint $x_i \in \mathbb{R}^p$
 - Cluster mean $m_k \in \mathbb{R}^p$
 - Cluster assignment $z_i \in \{1, \ldots, k\}$
- Standard k-means algorithm / Lloyd's algorithm
 - Initialize cluster means arbitrarily (e.g., sample from datapoints)
 - Alternate until convergence
 - * Update cluster assignments: $z_{1:n} \leftarrow \arg\min_{z_{1:n}} J(z_{1:n}, m_{1:k})$
 - · i.e., assign each point to the cluster with closest mean
 - * Update cluster means: $m_{1:k} \leftarrow \arg\min_{m_{1:k}} J(z_{1:n}, m_{1:k})$
 - · i.e., $m_j = \frac{\sum_{i=1}^n \mathbb{I}(z_i=j)x_i}{\sum_{i=1}^n \mathbb{I}(z_i=j)}$, the mean of points in cluster j

Objective function J after each iteration

Does Lloyd's algorithm always converge?

- The objective J always converges
 - Lloyd's algorithm is a coordinate descent procedure
 - Each step monotonically decreases objective
 - Only finite number of partitions of data, so objective must converge in finite number of steps
- Technically, algorithm could cycle if ties arise (i.e., if multiple centroids equidistant from a point)
 - Minor problem: avoid by breaking ties in a consistent fashion (e.g., always assign point to "smallest" centroid under some total ordering of vectors)

Image compression

Credit: Dave Blei

- Pixel is vector of red, green, and blue values in {0,...,255}
- 2048 × 1536 image is a dataset of 3.1 million vectors, each requiring 24 bits of storage
- Let's compress by clustering pixels with k-means

Vector quantization

Credit: Dave Blei

- Recovered k means called codebook
 - Each codeword (after rounding) corresponds to a color
- Compression: replace each image pixel by its codeword
- $log_2(k)$ bits instead of 24 per pixel (plus small overhead)

Peanuts vector quantization: 2 means

Peanuts vector quantization: 4 means

Peanuts vector quantization: 8 means

Peanuts Vector Quantization: 16 means

Peanuts Vector Quantization: 32 means

Peanuts vector quantization: 64 means

Peanuts vector quantization: 128 means

Peanuts vector quantization: 256 means

k-means: Practical considerations

1. Squared Euclidean objective restrictive

$$J(z_{1:n}, m_{1:k}) = \sum_{i=1}^{n} ||x_i - m_{z_i}||_2^2$$

- Inappropriate for non-quantitative (e.g., categorical) features
- Euclidean distance
 - Sensitive to outliers
 - Ill-suited for features with very different scales / importances
- 2. NP-hard optimization problem
 - Lloyd's algorithm usually finds suboptimal solutions
 - Many random restarts often needed for good performance
- 3. Must choose *k*
- 4. Running time: # features x # datapoints x # per iteration
 - Orders of magnitude reductions using space-partitioning data structures like kd-trees (e.g., Kanungo et al., 2002, optional reading)

Beyond Euclidean distance

- Issue: Squared Euclidean distance in k-means
- Idea: Minimize $J_d(z_{1:n}, m_{1:k}) = \sum_{i=1}^n d(x_i, m_{z_i})$
 - Arbitrary dissimilarity / discrepancy measure d(x, m)
 - Optimize via coordinate descent as in Lloyd's algorithm
 - Update cluster assignments: $z_{1:n} \leftarrow \arg\min_{z_{1:n}} J_d(z_{1:n}, m_{1:k})$
 - Update cluster representatives: $m_{1:k} \leftarrow \arg\min_{m_{1:k}} J_d(z_{1:n}, m_{1:k})$
 - Pro: Applies to all data types and dissimilarity measures
 - Con: Updating cluster representatives $m_{1:k}$ may be expensive
- k-medoids algorithm
 - Minimize J_d above but constrain each cluster representative to be a datapoint, i.e. $m_i \in \{x_1, ..., x_n\}$
 - Pro: Don't need to store datapoints, only pairwise discrepancies $d(x_i, x_i)$

Arthur and Vassilvitskii, 2008 (optional reading)

- Issues: Lloyd's algorithm suboptimal, random restarts
- k-means++: Improves initialization of Lloyd's algorithm
 - Choose first center m_1 uniformly at random from $\{x_1, ..., x_n\}$
 - For j = 2, ..., k:
 - Let D(x) = Euclidean distance to closest center previously chosen
 - Choose $m_i = x_i$ with probability proportional to $D(x_i)^2$
 - Run Lloyd's algorithm with this initialization
- Thm: E[objective after k-means++] ≤ 8(ln(k) + 2) optimal
- In practice: more accurate and faster than k-means alone

	Average ϕ		Minin	num ϕ	Average T		
k	k-means	k-means++	k-means	k-means++	k-means	k-means++	
10	$3.387 \cdot 10^{8}$	93.37%	$3.206 \cdot 10^8$	94.40%	63.94	44.49%	
25	$3.149 \cdot 10^8$	99.20%	$3.100 \cdot 10^{8}$	99.32%	257.34	49.19%	
50	$3.079 \cdot 10^8$	99.84%	$3.076 \cdot 10^{8}$	99.87%	917.00	66.70%	

Table 3: Experimental results on the *Intrusion* dataset (n = 494019, d = 35). For k-means, we list the actual potential and time in seconds. For k-means++, we list the percentage *improvement* over k-means.

- Some applications determine k
 - Target compression level in vector quantization
 - Funds to develop three new Cheerios flavors
- How do we pick k otherwise?
 - Minimum k-means objective shrinks as k grows: not helpful
 - Evaluate fit of learned centers on held-out data?
 - Problem: Held-out objective also tends to decrease with k!
 - No agreed-upon solution but many alternatives...
 - Stability: Cluster randomly subsampled or perturbed datasets and measure discrepancy between resulting clusterings
 - Choose k to minimize discrepancy

Elbow criterion

- Marginal gain in objective may decrease at true / natural value of k
- Not always unambiguously defined

Simulated data, 4 true clusters (Courtesy: Dave Blei)

Human tumor microarray data

(Courtesy: Rob Tibshirani)

- Gap statistic (Tibshirani, Walther, & Hastie, 2001 optional reading)
 - Let O_k be the objective value of k-means run on $\{x_1, ..., x_n\}$
 - Let U_k be the objective value of k-means run on n points sampled randomly from the smallest box containing $\{x_1, ..., x_n\}$
 - Serves as a single cluster null distribution
 - Roughly, choose k to maximize $Gap(k) = E[log(U_k)] log(O_k)$
 - More precisely, form Monte Carlo estimate of Gap and choose smallest k such that
 - $Gap_{est}(k) \ge Gap_{est}(k+1)$ estimate of standard deviation of $log(U_k)$

Gap statistic: simulated data

FIGURE 14.11. (Left panel): observed (green) and expected (blue) values of $\log W_K$ for the simulated data of Figure 14.4. Both curves have been translated to equal zero at one cluster. (Right panel): Gap curve, equal to the difference between the observed and expected values of $\log W_K$. The Gap estimate K^* is the smallest K producing a gap within one standard deviation of the gap at K+1; 37 here $K^*=2$.

Comparing estimates of k

(Tibshira	ni, Walther, Hastie 2001)									
_	Estimate of number of clusters \hat{k}									
Method	1	2	3	4	5	6	7	8	9	10
	Null model in 2 dimensions									
СН	0*	0	0	10	0	0	3	5	17	15
KL	0*	0	1	5	12	5	13	5	9	0
Hartigan	0*	0	0	0	0	0	0	0	2	48
Silhouette	0*	18	22	10	0	0	0	0	0	0
Gap	42*	7	0	1	0	0	0	0	0	0
$\mathrm{Gap/pc}$	44*	6	0	0	0	0	0	0	0	0
	Null model in 10D									
CH	0*	50	0	0	0	0	0	0	0	0
KL	0*	29	5	3	3	2	2	0	0	0
Hartigan	0*	0	1	20	21	6	0	0	0	0
Silhouette	0*	49	1	0	0	0	0	0	0	0
Gap/unif	49*	1	0	0	0	0	0	0	0	0
Gap/pc	50*	0	0	0	0	0	0	0	0	0
	Three clusters									
СН	0	0	50*	0	0	0	0	0	0	0
KL	0	0	39*	0	5	1	1	2	0	0
Hartigan	0	0	1*	8	19	13	3	3	2	1
Silhouette	0	0	50*	0	0	0	0	0	0	0
Gap/unif	1	0	49*	0	0	0	0	0	0 3	8 0
Gap/pc	2	O	48*	0	0	0	0	0	0	0

Comparing estimates of k

(Tibshir	ani, Walther, Hastie 2001)									
_	Est	imate o	f numb	oer of cl	usters	s \hat{k}				
Method	1	2	3	4	5	6	7	8	9	10
	Random 4 clusters in 3D									
СН	0	0	0	42^*	8	0	0	0	0	0
KL	0	0	0	35*	5	3	3	3	0	0
Hartigan	0	1	7	3*	9	12	8	2	3	5
Silhouette	0	20	15	15*	0	O	0	0	0	0
Gap/unif	0	1	2	47^*	0	O	0	0	0	0
$_{ m Gap/pc}$	2	2	4	42*	0	O	0	0	0	0
	Random 4 clusters in 10D									
СН	0	1	4	44*	1	O	0	0	0	0
$_{ m KL}$	0	0	0	45*	3	1	1	0	0	0
Hartigan	0	0	2	48*	0	O	0	0	0	0
Silhouette	0	13	20	16*	5	O	0	0	0	0
Gap/unif	0	0	0	50*	1	O	0	0	0	0
$_{ m Gap/pc}$	0	0	4	46*	0	0	0	0	0	0
	Two elongated clusters									
CH	0	0*	0	0	0	0	0	7	16	27
KL	0	50*	0	0	0	0	0	0	0	0
Hartigan	0	0*	0	1	0	2	1	5	6	35
Gap/unif	0	0*	17	16	2	14	1	0	0	0
Gap/pc	0	50*	0	0	0	0	0	0	0	39 0

Gap statistic

- Performs similarly to other leading methods when k > 1
- Pro: Can detect k = 1 (many other methods can't)
- Con: Performs poorly in high dimensions

(Mohajer et al., 2011: A comparison of Gap statistic definitions with and without logarithm function)

k-means in the wild: Biology

Coping with cold: An integrative, multitissue analysis of the transciptome of a poikilothermic vertebrate (Gracey et al., 2004)

- Carp exposed to increasing levels of cold
- Genes (rows) clustered using 23means according to cold response across different tissues
 - No explanation for k = 23 given
- Eventually interpreted functional significance of each cluster

Credit: Dave Blei

k-means in the wild: Archaeology

Spatial and Statistical Inference of Late Bronze Age Polities in the Southern Levant (Savage and Falconer, 2003)

- Cluster archaeological site locations in Israel with k-means
- k chosen by comparing to a null distribution based on randomly sampled points
- "Infer a political landscape that corresponds well with many aspects of historical reconstruction and propose new ideas on the configuration and structure of Late Bronze Age [1500-1200 BC] polities"

k-means in the wild: Education

Credit: Dave Blei

Teachers as Sources of Middle School Students' Motivational Identity: Variable-Centered and Person-Centered Analytic Approaches (Murdock and Miller, 2003)

- Clustered 206 eighth-grade students by survey data describing parent academic support, peer academic support, and teacher caring levels
- No clusters centers had above average support for one category and below average support for another; suggests that support classes do not compensate for one another?
- k = 5 chosen based on parsimony, heterogeneity, convergence issues, and inspection

k-means in the wild: Education

Credit: Dave Blei

Table 3. Five-Cluster Solution: Z scores on Each Clustering Variable

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Teacher caring	 5	5 to .5	5 to .5	 5	1.0
Peers' academic support	1.0	5	1.0	5	5 to .5
Parents' academic support	.5	-1.0	5 to $.5$	5 to $.5$	1.0

TABLE 4. Means and Standard Deviations for Each Cluster on Grade 8 Motivational Variables

	Academic Self-Efficacy		Intrinsic Valuing of Education		Teacher-Rated Effort	
Cluster	M	SD	M	SD	M	SD
1. All positive	3.59	.48a	2.99	.55ª	3.74	.26ª
2. Peer negative, parents very negative	2.44	.66 ^b	2.16	.51 ^b	3.05	.61 ^b
3. Peer positive	3.01	.73°	2.43	.66 ^b	3.26	.66 ^b
4. Negative teacher and peer	2.47	.63 ^b	2.24	.51 ^b	3.17	.59 ^b
5. Positive teacher and parents	3.19	.65°	2.89	.62ª	3.54	.47a

k-means: Practical considerations, Part II

- Hard assignments to clusters not stable under small perturbations of data
 - Mixture modeling (next time) employs soft assignments
- Gives equal weight to each coordinate and cluster
 - Mixture modeling can relax both assumptions
- Clusters change arbitrarily for different K
 - Hierarchical clustering (later) yields nested clusterings
- Works poorly on non-convex clusters
 - Spectral clustering (later) well-suited to non-convex clusters

Summary

- Unsupervised learning:
 - Goal: Discover hidden structure in data without prior labels or observations of that structure
 - Challenging but necessary
 - Various practical benefits
- Clustering
 - Goal: Segment datapoints into similar groups
 - Many applications, many approaches
- k-means
 - Simple, popular, canonical approach to clustering
 - Great diversity of applications, including vector quantization
 - Various drawbacks and opportunities for improvement
 - Objective, solution optimality, choice of k, running time
 - Various generalizations, including k-medoids

Credits

 Parts of this material were adapted from slides by Dave Blei, Sriram Sankararaman, and Robert Tibshirani