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13.1 Canonical correlation analysis

13.1.1 Recap

CCA is a linear dimensionality reduction procedure for paired or two-viewed data. Given
two mean-centered datasets X and Y, each with n rows, the CCA objective is

u' XTYw
max

wv UL XTXuwTYTY vy

This is a generalized eigenvalue problem, which is solved by a generalized eigenvector (u*, v*)7

satisfying
0 X'y ut 3\ XX 0 u*
YTX 0 vt ) 0 YTy v )

As in PCA, after obtaining the first pair of canonical directions in this way, subsequent pairs
(ug,v2), ..., (ur, vr) may be extracted by solving the CCA optimization problem subject to
the constraint that the new canonical variables be uncorrelated with prior ones, i.e.,

Corr(u;frx,ule) = Corr(vay, vly) =0 VI<j,

where x is a random vector taking on values x1,..., 2, with probability 1/n each, and y
plays an equivalent role.

13.1.2 Degeneracy in CCA

There are several situations in which the CCA solution exhibits degeneracy:

o If z; = Ay, for all 7, then any u is an optimal CCA direction (with correlation = 1).
This can be seen by choosing v = ATu. So the CCA direction is meaningless in this
case.

e If the coordinates of x and y are uncorrelated, i.e., %X Ty is identically 0, then any
(u,v) is optimal with correlation = 0.

e CCA is sometimes applied without centering X and Y’; this corresponds to using a

cosine similarity objective instead of correlation. Then if rank(X) = n, any v is
optimal, with correlation = 1, via u = X7 (X X7)"'Yv. We have the same problem if
rank(Y) = n.
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Regularization is often introduced into CCA to break such degeneracy ties in favor of
higher-variance directions and to control overfitting. The standard regularized CCA objec-
tive is given by

u'XTYv
max
wo JuT(XTX + M DuoT (YTY + Aol )v
for some A1, Ao > 0. This is akin to penalizing or constraining the ¢, norms of v and v as in
ridge regression.

13.1.3 Kernel CCA

As a final note, one may derive a kernelized version of CCA in much the same way that we
derived kernel PCA. In this case, we work with two kernel functions kx and ky.

13.2 Sparse unsupervised learning

13.2.1 Motivation

When performing dimensionality reduction or latent feature modeling, we often want to
interpret the recovered component loadings u; € R? in terms of the input coordinates. Here
are two examples.

e Recall the PCA decomposition of handwritten 3s discussed in ESL. We were able to
visualize our decomposition in terms of the extracted component loadings, the “eigen-
3s”:

f()\) = T+ AMv1+ g0

= 3+A1::}+)\2 3

These intuitive visualizations of the loadings allowed us to interpret the data features
being captured by the component directions (in this case, long-tailedness and thickness
of the 3, respectively).

e When studying gene expression in cancer patients (so that each coordinate of z; is
a gene), we would like to declare that a few genes are responsible for most of the
variation observed in the data. We would like the extracted loadings uq,...,u; € RP
to be sparse so that all variance is attributed to those few non-zero coordinates.

Unfortunately, the loadings obtained from most of the latent feature modeling methods
discussed so far are typically dense: most if not all coordinates are nonzero. This is similar
to the dense regression coefficients that result from least squares linear regression.

This leads us to the question, “How can we modify a latent feature modeling proce-
dure like PCA to obtain sparse loadings?” In the next subsection, we describe some early
approaches to answering this question in the context of PCA.
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13.2.2 Earliest attempts
Rotating the loadings matrix

One way to improve the sparsity of a collection of loadings without sacrificing any of the
variance explained is to rotate the k loadings to be sparser and more interpretable, i.e., we
transform U to U,,s = UR where U,,; exhibits sparsity (see, e.g., Richman, 1986). Essen-
tially we are finding a more interpretable basis for the subspace spanned by the original PC
loadings. The resulting U, captures the same data variance overall as the original U. Here
is a simple example.

Example 1. Take p = 3. In the following picture, (uj,us) represents our original pair of
principal component loadings. Each vector is only 2-sparse. Meanwhile, (uy,us3), a rotation
of (u1,us), is sparser than (u, us) but also spans exactly the same subspace of R? (namely,
the plane in which this sheet of paper lies).

up = (0,1,0)
A

Uy = (1, 1, 0)

> {[2:<]-7070)

Uy = (1, —1,0)

This method has a couple of drawbacks. First, there is no guarantee that a sparse rotation
exists. Second, the rotated loadings lose the successive variance maximization property; that
is, 77 may not be the direction of maximum variance if k& > 1.

Thresholding

This approach involves thresholding the small-magnitude entries in the loading vectors (see,
e.g., Cadima and Jolliffe, 1995), i.e., setting those small magnitude entries to 0. Unfortu-
nately the results lose orthonormality, and they may not be optimal for a target sparsity
level.

13.2.3 An optimization approach

Continuing to focus on the PCA setting, we will next examine the possibility of directly
constraining or penalizing the cardinality of the loadings in the context of a PCA optimization

problem. Define
p

card(u) = Y T (u; # 0) = [[ullo.

i=1

Note that ||ul| is often called the Iy “norm” of u, although this is actually not a norm.
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Adding a cardinality constraint to the PCA objective leads to the so-called sparse PCA
optimization problem, which is the subject of the next section.

13.3 Sparse PCA optimization problem

13.3.1 Equivalent (single component) objectives

When we first introduced PCA, we presented two different motivations, namely variance max-

imization and reconstruction error minimization, which led to two equivalent optimization

problems. We will now add cardinality constraints to both of these optimization problems.
e Variance maximization

XTX

maxuf (51 s.t. HU1||2 = 1, ||U1H0 S C1 (V)

ul

where ¢ is the cardinality bound. Note that we could equivalently penalize ||us||o in
the objective instead of constraining.

e Reconstruction error minimization

In the original PCA setting, we had the objectives

n
' T (12
min z: — uwulz, R1
uy s.t. U1||2:17;Zl H ¢ 1 1 Z||2 ( )
n
1 T 2 2
U1,v1 SgnﬁlUﬂh:l ZZI HIZ U1ty ‘IzH2 + ||U1H2 ( )
For A > 0, (R1) and (R2) are equivalent (up to the scale of ;) since v} = ::f at the
12

solution.

We showed earlier that, in the absence of a cardinality constraint, variance maxi-
mization and reconstruction error minimization are equivalent optimization problems.
Perhaps surprisingly, they are still equivalent here: adding the cardinality constraint
llui[lo < ¢1 to (R1) or (R2) is equivalent to (V) (up to the scale of u,)!

Exercise. Prove the above statement. (Hint: v} oc X7 Xu} for (R2).)

13.3.2 Solutions for sparse PCA

A potential difficulty in the above optimization problem is selecting the cardinality ¢;. A
more daunting obstacle is that any of these cardinality-constrained optimization problems
is NP-hard. We have several options for dealing with this obstacle.

e Option 1. We could use standard combinatorial optimization techniques like branch-
and-bound to solve the problem exactly (Moghaddam et al., 2006). This is optimal
but in practice may take a very, very long time.
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e Option 2. We could take a greedy approach to variable selection like the GSPCA
(greedy sparse PCA) approach of Moghaddam et al. (2006). They propose a greedy
bidirectional search consisting of both a forward pass and a backward pass:

— In the forward pass, we start with no selected variables and successively add in
the variable that improves the objective the most.

— In the backward pass, we start with all variables and successively remove the
one that reduces the objective the least.

Then, for a given target cardinality ¢, we choose the better solution of the forward and
backward passes. This is not guaranteed to yield an optimal solution in general, but
it works well in practice.

e Option 3. Our third option is the most commonly explored. We will attempt to solve
a (hopefully more tractable) surrogate optimization problem. The idea is to replace the
hard combinatorial problem with a simpler non-combinatorial problem. Many, many
authors have followed this path; we will explore some of the more popular solutions
like SCoTLASS of Jolliffe et al. (2003), SPCA of Zou et al. (2006), and Direct SPCA
(DSPCA) of d’Aspremont et al. (2004).

13.3.3 SCoTLASS

The SCoTLASS procedure replaces |[u[lo with the convex surrogate |[u|[s = >77_, |uy|
in the variance maximization problem (V). The ¢; norm is selected, because it is known
to induce sparse solutions (e.g., as it does in Lasso regression). The resulting optimization

problem is

w X' Xu
max ———— st lwll=1, |ju|l <t
ul n

where t; is a tuning parameter that controls the resulting sparsity level. The good news
is that we now have a continuous optimization problem. The bad is that this problem is
still nonconvex, and the proposed algorithm (projected gradient) has been shown to be slow,
computationally expensive, and prone to local maxima. We will continue our discussion of
surrogate optimization problems in the next lecture.
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