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10.1 Factor Analysis

10.1.1 Recap

Recall the factor analysis (FA) model for linear dimensionality reduction of continuous data.
In this model, our observations xi ∈ Rp are related to latent factors zi ∈ Rq in the following
manner:

zi
iid∼ N (0, Iq×q), xi|zi

ind∼ N (µ+ Λzi; Ψ),

where we assume Ψ ∈ Rp×p is diagonal. Given the observations, we would like to infer the
latent factors, which provide a lower dimensional (approximate) representation of our data.
Last time we computed the conditional distribution of zi given xi, but this distribution
of course depends on the unknown parameters θ = (µ,Λ,Ψ). We derived the maximum
likelihood estimator for µ, which is the sample mean. However, Λ and Ψ are coupled together
in the likelihood by a determinant and a matrix inverse, and there is no closed-form MLE
for these parameters. We will instead estimate Λ and Ψ using an EM algorithm.

10.1.2 EM Parameter Estimation

Since the MLE for µ is known, we will assume w.l.o.g. that the data have been mean-centered
as xi ← xi − µ̂MLE and remove the parameter µ from the model. In order to derive an EM
algorithm, we begin as usual with the complete log-likelihood of our data together with the
latent variables:

log p(z1:n, x1:n; θ) = −1

2

n∑
i=1

zTi zi −
n

2
log |Ψ| − 1

2

n∑
i=1

(xi − Λzi)
TΨ−1(xi − Λzi) + C1, (10.1)

where C1 is a parameter free term including normalizing constants. Observe that in this
complete log-likelihood, Λ and Ψ are no longer coupled together as they were in the marginal
likelihood of the observed data. Noting that the zTi zi term above does not involve the
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parameters and making several other simplifications, we have

log p(z1:n, x1:n; θ)

= − n

2
log |Ψ| − 1

2

n∑
i=1

tr
(
(xi − Λzi)

TΨ−1(xi − Λzi)
)

+ C2

= − n

2
log |Ψ| − 1

2

n∑
i=1

tr
(
(xi − Λzi)(xi − Λzi)

TΨ−1
)

+ C2

= − n

2
log |Ψ| − n

2

n∑
i=1

tr(SΨ−1) + C2,

where S is defined as the empirical conditional covariance

1

n

n∑
i=1

(xi − Λzi)(xi − Λzi)
T =

1

n

n∑
i=1

[
xix

T
i + Λziz

T
i ΛT − Λzix

T
i − xizTi ΛT

]
.

In the second line above we used the fact that a scalar is equal to its trace. In the third
line we used the cyclic property of the trace tr(ABC) = tr(CAB), which can be applied
whenever the matrix/vector multiplications are all well-defined.

We now derive the E-step by computing the expected complete log-likelihood (ECLL)
under qt(z1:n) = p(z1:n|x1:n; θ(t)), where θ(t) is our estimate from the previous EM itera-
tion. Recall that this conditional distribution is Gaussian and that we derived its mean and
covariance last time. The ECLL is

Eqt log p(z1:n, x1:n; θ) = −n
2

log |Ψ| − n

2
tr
(
Eqt [S]Ψ−1

)
+ C2

after interchanging the trace and expectation. We must therefore compute

Eqt [S] =
1

n

n∑
i=1

[
xix

T
i + ΛEqt [ziz

T
i ]ΛT − ΛEqt [zi]x

T
i − xiEqt [z

T
i ]ΛT

]
,

where Eqt [zi] = E[zi|xi] was computed last time and

Eqt [ziz
T
i ] = Cov[zi|xi] + E[zi|xi]E[zi|xi]T

is similarly easy to compute.
For the M-step, one can show that the ECLL is maximized by taking

Λ(t+1) =

(∑
i

xiEqt [z
T
i ]

)(∑
i

Eqt [ziz
T
i ]

)−1
and

Ψ(t+1) = diag(Eqt [S]) =
1

n
diag(

∑
i

xix
T
i − Λ(t+1)

∑
i

Eqt [zi]x
T
i ).

Note the similarity of the Λ update to the normal equations solved during linear regression.
Also, notice that the Ψ update involves the updated Λ(t+1) and not Λ(t).

10-2



STATS 306B Lecture 10 — April 30 Spring 2014

10.1.3 Observations

There are several connections between FA and previous models/algorithms we have consid-
ered. We might consider FA as similar to Gaussian mixture modeling but with the latent
variables zi continuous rather than discrete. We can also draw similarities between FA and
PCA. Both methods describe data using a lower dimensional linear representation. How-
ever, factor analysis allows for more general covariance structure than PCA does, and so the
loadings and factors derived from factor analysis do not in general correspond to the results
of PCA. In the case that Ψ is restricted to be isotropic (i.e., Ψ = σ2I for unknown σ2) we
recover the probabilistic PCA (PPCA) model (Tipping & Bishop ’95). In this restricted case
there are closed form MLEs. If U is the matrix whose columns are the top q eigenvectors of
the empirical covariance XTX

n
, and λ1, . . . , λp are the eigenvalues, then we have

σ̂2
MLE =

1

p− q

p∑
j=q+1

λj,

Λ̂MLE = U(diag(λ1, . . . , λq)− σ̂2
MLE)1/2.

In this restricted setup, the factor analysis loadings (columns of Λ̂) span the same subspace as
the PCA loadings U . Moreover, if we consider σ2 as known then as σ2 → 0, PPCA actually
recovers the PCA algorithm. This is another example of small variance asymptotics, like we
have seen before.

We should also mention a few caveats to using factor analysis. First, the FA parameters
are in general not identifiable. For example, given an orthogonal matrix O (such that OOT =
OTO = I), the parameters Λ and ΛO will give rise to the same distribution of xi. Hence,
interpretation of the learned values of Λ and zi must be done with care.

Even apart from these interpretability issues, factor analysis treats datapoints as inde-
pendent draws. What if our data has known, e.g., sequential, dependence structure? Such
structure arises in a variety of settings:

• Tracking 3D object movement given radar or video

• Autopilot, in which we would like to estimate the state of a vehicle over time from
internal and external sensors

• The inference of evolving market factors from financial time series

• Character recognition based on touch screen contact over time

• GPS navigation

• Recommender systems, in which we aim to estimate users’ preferences over time

We will next investigate a probabilistic model designed for data with such a known sequential
dependence structure.
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Figure 10.1. Graphical model for LGSSM

10.2 Linear Gaussian State Space Model

The linear Gaussian state space model is a generalization of factor analysis to the
settting of sequential continuous data. Under this model, we view our data sequence
x0, x1, . . . xT ∈ Rp as a random draw from the following generative process:

(0) z0 ∼ N (0,Σ0): sample the initial state in Rq

(1) zt = Azt−1 + wt−1, where, wt−1
ind∼ N (0, Q) or alternately, zt|zt−1

ind∼ N (Azt−1, Q). i.e.
zt is sampled from linear gaussian dynamics given the prior state zt−1 via the unknown
transition matrix A ∈ Rq×q and unknown covariance matrix Q ∈ Rq×q.

(2) xt = Czt + vt for vt
ind∼ N (0, R) or, xt|zt

ind∼ N (Czt, R). i.e. xt are the sample
observations given the state zt, normally distributed with mean Czt, where C ∈ Rp×q

is the unknown loadings matrix, and unknown covariance R ∈ Rp×p

Notice that this is similar to the emission model from factor analysis but with a more general
covariance matrix R and with dependent states.

10.2.1 Graphical Model

The LGSSM graphical model is the same as the Hidden Markov Model graphical model,
since the two models have identical conditional independence structures. However, in the
present setting, we have Gaussian as opposed to discrete hidden variables zi.

10.2.2 Unsupervised Learning Goal

Our unsupervised learning goal is to draw inferences about the hidden states z0, z1, . . . , zT .
Here are three of the most common inferential tasks:

(1) Filtering. Infer the current state given history of observations P (zt|x0, . . . xt). e.g:-
What is the current state of the missile given its position over some past time?

(2) Smoothing. Infer a past state given observations P (zs|x0, . . . xt) where s < t e.g:-
Where did the missile originate given we observed it over some time?
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(3) Prediction. Predict a future state given observations P (zu|x0, . . . xt) where u > t e.g:-
Where would we expect the missile to be in some time from now?

In this lecture and the next, we will detail recursive algorithms for carrying out filtering and
smoothing, assuming all model parameters are known.

10.2.3 Kalman Filter

The Kalman Filter is an algorithm for filtering in an LGSSM where the parameters are
known. We wish to find the probability distribution of the current state given history of
observations. Since the states and the observations are jointly Gaussian, it suffices to find
the mean and variance of the conditional distribution which is also going to be Gaussian.
We introduce the following shorthand notation for filtered means and covariances

ẑt|t = E[zt|x0:t]
Pt|t = E[(zt − ẑt|t)(zt − ẑt|t)T |x0:t]

We will also be interested in computing the one-step prediction means and covariances
ẑt|t−1, Pt|t−1 of Pr(zt|x0:t−1).

Filtering Strategy

We will derive our filtering algorithm via a two step recursion:

(1) Time update: Compute the prediction distribution P (zt+1|x0:t) given the last filtered
distribution P (zt|x0:t)

(2) Measurement update: Compute the new filtered distribution P (zt+1|x0:t+1) given the
prediction distribution P (zt+1|x0:t)

Time Update

We will use the fact that zt+1 = Azt + wt to compute the mean and covariance of the
prediction distribution from the filtered distribution:

ẑt+1|t = E[Azt + wt|x0:t]
= AE[zt|x0:t] + 0

= Aẑt|t

Pt+1|t = E[(zt+1 − ẑt+1|t)(zt+1 − ẑt+1|t)
T |x0:t]

= E[(Azt + wt − Aẑt|t)(Azt + wt − Aẑt|t)T |x0:t]
= AE[(zt − ẑt|t)(zt − ẑt|t)T |x0:t]AT + E[wtw

T
t |x0:t] + 0

= APt|tA
T +Q
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